
Original Paper

Identifying Clinical Terms in Medical Text Using Ontology-Guided
Machine Learning

Aryan Arbabi1,2, MSc; David R Adams3, MD, PhD; Sanja Fidler1, PhD; Michael Brudno1,2, PhD
1Department of Computer Science, University of Toronto, Toronto, ON, Canada
2Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON, Canada
3Section on Human Biochemical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States

Corresponding Author:
Michael Brudno, PhD
Department of Computer Science
University of Toronto
10 King's College Road, SF 3303
Toronto, ON, M5S 3G4
Canada
Phone: 1 4169782589
Email: brudno@cs.toronto.edu

Abstract

Background: Automatic recognition of medical concepts in unstructured text is an important component of many clinical and
research applications, and its accuracy has a large impact on electronic health record analysis. The mining of medical concepts
is complicated by the broad use of synonyms and nonstandard terms in medical documents.

Objective: We present a machine learning model for concept recognition in large unstructured text, which optimizes the use
of ontological structures and can identify previously unobserved synonyms for concepts in the ontology.

Methods: We present a neural dictionary model that can be used to predict if a phrase is synonymous to a concept in a reference
ontology. Our model, called the Neural Concept Recognizer (NCR), uses a convolutional neural network to encode input phrases
and then rank medical concepts based on the similarity in that space. It uses the hierarchical structure provided by the biomedical
ontology as an implicit prior embedding to better learn embedding of various terms. We trained our model on two biomedical
ontologies—the Human Phenotype Ontology (HPO) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT).

Results: We tested our model trained on HPO by using two different data sets: 288 annotated PubMed abstracts and 39 clinical
reports. We achieved 1.7%-3% higher F1-scores than those for our strongest manually engineered rule-based baselines (P=.003).
We also tested our model trained on the SNOMED-CT by using 2000 Intensive Care Unit discharge summaries from MIMIC
(Multiparameter Intelligent Monitoring in Intensive Care) and achieved 0.9%-1.3% higher F1-scores than those of our baseline.
The results of our experiments show high accuracy of our model as well as the value of using the taxonomy structure of the
ontology in concept recognition.

Conclusion: Most popular medical concept recognizers rely on rule-based models, which cannot generalize well to unseen
synonyms. In addition, most machine learning methods typically require large corpora of annotated text that cover all classes of
concepts, which can be extremely difficult to obtain for biomedical ontologies. Without relying on large-scale labeled training
data or requiring any custom training, our model can be efficiently generalized to new synonyms and performs as well or better
than state-of-the-art methods custom built for specific ontologies.

(JMIR Med Inform 2019;7(2):e12596) doi: 10.2196/12596
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Introduction

Background
Automatic recognition of medical concepts in unstructured text
is a key component of biomedical information retrieval systems.
Its applications include analysis of unstructured text in electronic
health records (EHR) [1-3] and knowledge discovery from
biomedical literature [4,5]. Many medical terminologies are
structured as ontologies, adding relations between concepts and
often including several synonyms for each term. One of the
most widely used ontologies in the medical space is
SNOMED-CT (Systematized Nomenclature of Medicine -
Clinical Terms) [6], which provides structured relationships for
over 300,000 medical concepts. SNOMED-CT is commonly
used in EHR Systems to help summarize patient encounters and
is fully integrated with the International Classification of
Diseases - Ninth Revision (ICD-9) billing codes used in the
United States and many other jurisdictions. The Human
Phenotype Ontology (HPO) [7] is an arrangement of terms used
to describe the visible manifestations, or phenotypes, of human
genetic diseases. With ~12,000 terms, the HPO has become the
standard ontology used in rare disease research and clinical
genetics and has been adopted by the International Rare Diseases
Research Consortium [8], ClinGen [9], and many other projects.
Although both SNOMED-CT and the HPO provide a number
of synonyms for each term, they usually miss many valid
synonymous terms, as manually curating every term that refers
to a concept is extremely difficult, if not impossible. For
example, HPO provides four additional synonyms for the term
“Renal neoplasm,” including “Kidney cancer” and “Renal
tumors,” but it does not include synonyms such as “Renal
cancer.” There are also many concepts in HPO, such as “Retinal
neoplasm,” which are not given any synonyms in the ontology.

Many concept recognition and text annotation tools have been
developed for biomedical text. Examples of popular tools for
general purpose are the NCBO (National Center for Biomedical
Ontology) annotator [10], OBO (Open Biological and
Biomedical Ontologies) annotator [11], MetaMap [12], and
Apache cTAKES (Clinical Text Analysis and Knowledge
Extraction System) [13]. Other tools focusing on more specific
domains have also been developed, such as BioLark [14] for
automatic recognition of terms from the HPO and a tool by
Lobo et al [15], which combines a machine learning approach
with manual validation rules to detect HPO terms. Another
example is the phenotype search tool provided by PhenoTips
[16], which uses Apache Solr indexed on the HPO and has an
extensive set of rule-based techniques to rank matching
phenotypes for a query. Many of these systems consist of a
pipeline of natural language processing components including
a tokenizer, part-of-speech tagger, sentence boundary detector,
and named entity recognizer (NER)/annotator. Generally, the
NER/annotator component of these tools are based on text
matching, dictionary look-ups, and rule-based methods, which
usually require significant engineering effort and are often
unable to handle novel synonyms that are not annotated in the
ontology.

On the other hand, in the more general domain of natural
language processing, many machine learning–based text
classification and NER tools have been recently introduced
[17-19]. Typically, these methods do not require manual
rule-based engineering; however, they are dependent on large
annotated text data for training. Popular among them is a model
known as LSTM-CRF, in which long short-term memory
(LSTM) [20], a variation of recurrent neural networks (RNNs)
widely used for processing sequences such as text, is used to
extract rich representations of the tokens in a sentence and is
then followed by a conditional random field (CRF) [21] on top
of these representations to recognize named entities.

Although these methods address a similar problem, they cannot
be used directly for concept recognition, as the number of named
entity classes is typically much lower than that of the concepts
in medical ontologies. For instance, CoNLL-2003 [22], a data
set widely used for evaluations of such methods, contains only
four classes: locations, persons, organizations, and
miscellaneous. As a result, these methods typically have a large
number of training and test examples for each class, while in
our setting, we are trying to recognize tens or hundreds of
thousands of terms and may have only a few or even no
examples of a specific term. Automatic creation of training data
by exact match searching of the synonyms in a large corpus
will not fully utilize synonyms that have no or low coverage in
the data set, can bring bias by mislabeling valid out-of-ontology
synonyms in the extracted snippets as negatives, and overfit to
the context of the more frequent senses. Hence, in a setting
where the training data does not fully cover all the classes,
methods based on dictionary look-up might have some
advantage, as they can identify a concept in a given text by
simply matching it to a synonym available in their dictionary
without requiring training data annotated with that concept.

In this paper, we develop a hybrid approach, called Neural
Concept Recognizer (NCR), by introducing a neural dictionary
model that learns to generalize to novel synonyms for concepts.
Our model is trained on the information provided by the
ontology, including the concept names, synonyms, and
taxonomic relations between the concepts, and can be used to
rank the concepts that a given phrase can match as a synonym.
Our model consists of two main components: an encoder, which
maps an input phrase to a vector representation, and an
embedding table, which consists of the vector representations
learned for the ontology concepts. The classification is
performed based on the similarity between the phrase vector
and the concept vectors. To allow for the use of our model to
also detect concepts from longer texts, we scan the input text
with fixed-size windows and report a phrase as matching a
concept if it is above a threshold that is chosen from an
appropriate validation data set.

Our work introduces a novel machine learning–based method
for automatic concept recognition of medical terms in clinical
text, and we have provided empirical results to demonstrate the
accuracy of our methods in several settings. We trained our
neural dictionary model on the HPO and used it to recognize
concepts from 228 PubMed abstracts and 39 clinical reports of
patients with rare genetic diseases. Additionally, we used a
subset of concepts from SNOMED-CT that have matching terms
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in ICD-9 and experimented on 2000 Intensive Care Unit (ICU)
discharge summaries from a Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC-III) data set [23]. In both
settings, we trained our model solely on the ontology data and
did not use the text corpora except to set the recognition
sensitivity threshold and choose model hyperparameters from
a small validation set. Although the main focus of this work is
recognizing HPO and SNOMED-CT concepts, our method can
be easily trained on other biomedical ontologies. The results of
our experiments show the high accuracy of our model, which
is on par with or better than hand-trained concept recognition
methods. Our tool has already been used in two applications.
It has been integrated with the PhenoTips tool to suggest
concepts for clinical reports [16] and to automatically recognize
occurrences of phenotypes in a clinical report for subsequent
data visualization [24].

Related Works
Recently, several machine learning methods have been used in
biomedical NER or concept recognition. Habibi et al [25] trained
the LSTM-CRF NER model, introduced by Lample et al [17],
to recognize five entity classes of genes/proteins, chemicals,
species, cell lines and diseases. They tested their model on
several biomedical corpora and achieved better results than
previous rule-based methods. In another work, Vani et al [26]
introduced a novel RNN–based model and showed its efficiency
on predicting ICD-9 codes in clinical notes. Both of these
methods require a training corpus annotated with the concepts
(loosely annotated in the case of Vani et al [26]).

Curating such an annotated corpus is more difficult for typical
biomedical ontologies, as the corpus has to cover thousands of
classes. For example, the HPO contains 11,442 concepts
(classes), while, to the best of our knowledge, the only publicly
available corpus hand annotated with HPO concepts [14]
contains 228 PubMed abstracts with only 607 unique annotations
that are not an exact match of a concept name or a synonym.
Thus, training a method to recognize the presence of concepts

in biomedical text requires a different approach when there is
a large number of concepts.

The concepts in an ontology often have a hierarchical structure
(ie, a taxonomy), which can be utilized in representation
learning. Hierarchies have been utilized in several recent
machine learning approaches. Deng et al [27] proposed a
CRF-based method for image classification that takes into
account inheritance and exclusion relations between the labels.
Their CRF model transfers knowledge between classes by
summing the weights along the hierarchy, leading to improved
performance. Vendrov et al [28] introduced the order-embedding
penalty to learn representations of hierarchical entities and used
it for image caption retrieval tasks. Gaussian embeddings were
introduced by Neelakantan et al [29] and learn a
high-dimensional Gaussian distribution that can model
entailment instead of single point vectors. Most recently, Nickel
et al [30] showed that learning representations in a hyperbolic
space can improve performance for hierarchical representations.

Methods

In this section, we first describe the neural dictionary model
that computes the likelihood that a given phrase matches each
concept from an ontology, and then demonstrate how to apply
the model to larger text fragments such as a full sentence, which
may have multiple (or no) terms.

Overview of the Neural Dictionary Model
The neural dictionary model receives a word or a phrase as input
and finds the probability of the concepts in the ontology
matching it. The model consists of a text encoder, which is a
neural network that maps the query phrase into vector
representation, and an embedding matrix with rows
corresponding to the ontology concepts (Figure 1). We use the
dot product of the query vector and a concept vector as the
measure of similarity.
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Figure 1. Architecture of the neural dictionary model. The encoder is shown at the top, and the procedure for computing the embedding for a concept
is illustrated at the bottom. Encoder: a query phrase is first represented by its word vectors, which are then projected by a convolution layer into a new
space. Then, a max-over-time pooling layer is used to aggregate the set of vectors into a single one. Thereafter, a fully connected layer maps this vector
into the final representation of the phrase. Concept embedding: a matrix of raw embeddings is learned, where each row represents one concept. The
final embedding of a concept is retrieved by summing the raw embeddings for that concept and all of its ancestors in the ontology. FC: fully connected.

Encoder
We use word embeddings to represent the input words learned
in a pre-processing step by running fastText [31] on publicly
available MEDLINE/PubMed abstracts. The goal of this
unsupervised step is to map semantically similar words (eg,
synonyms) to close vectors. We selected fastText for this task
primarily because it takes into account the subword information,
which is important in the medical domain where there are many
semantically close words with slight morphologic variations.

Inspired by the work of Kim et al [32], our encoder projects
these word vectors into another space using a convolution neural
network. We have used a much simpler network, consisting of
a single convolution layer, with a filter size of one word.
Although our choice of filter size has the disadvantage of losing
the word order information, in our settings, this was outweighed
by the benefit of having fewer network parameters to learn. We
also tried other types of encoders such as different variations
of LSTMs and small variants of attention-based encoders [33].
However, given the small amount of training data available,
simpler encoders were more effective.

After the first layer of projection, the output vectors were
aggregated into a single vector (v) using a max-over-time
pooling operation, as shown in the following equation

v=maxt{ELU(Wx(t)+b)}, where x(t) is the word vector for the tth
word in the phrase; W and b are the weight matrix and the bias
vector of the convolution filter, respectively; and ELU [34] is
the activation function we used in the convolution layer. It
should also be noted that the max operation used in the equation
above is an element-wise operation that takes the maximum
value of each feature across projected word vectors. Finally, a
fully connected layer with the weights U was applied on v,
followed by a ReLU (rectified linear unit) activation and l2
normalization. The result e was used as the encoded vector
representation of the phrase:

Concept Representations
Our model includes a component that learns representations for
concepts and measures the similarity between an input phrase
and the concepts by computing the dot product between these
representations and the encoded phrase e.

We denote these representations by the matrix H, where each
row corresponds to one concept. Our model does not learn H

directly, but instead learns a matrix where each row

represents the features of concept c that are “novel”
compared to its ancestors. Then, H can be derived by

multiplying by the taxonomy’s ancestry matrix A: 

Each element of the ancestry matrix Ai,j is nonzero only if
concept j is an ancestor of i (including i=j) and is calculated as:

The final embedding of a concept would be the final embedding
of its parent (or the average of its parents, in cases of
multi-inheritance) plus its own raw embedding (ie,

). In other words, the parent concept provides the
global location in the embedding space, whereas the child
concepts learn their local locations with respect to that space.

This has two major advantages. First, it incorporates the
taxonomic structure as implicit prior information on the
geometry of the concept embeddings. Second, by binding the
embeddings of the concepts, training becomes more efficient,
as for each concept, it is sufficient to learn only the local location
with respect to its parent, rather than learning the absolute
location from scratch. Furthermore, when the location of a
concept gets updated, both its descendants and ancestors will
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also get updated, even if they do not have samples present in
the mini-batch. More specifically, as a concept gets updated,
the global locations provided to all its descendants are
automatically updated as well, while the actual raw embedding
of its ancestors will get updated through the backpropagation
process. The results of our experiments quantitatively and
qualitatively show the advantage of this approach in our task.

Finally, the classification is done by computing the dot product
(plus a bias term) followed by a softmax layer as follows:

The taxonomy information can be ignored by setting A to the
identity matrix I. In this scenario, the model would behave like

an ordinary softmax classifier with the weight matrix 

Training Procedure
Training is performed on the names and synonyms provided by
the ontology. If a concept has multiple synonyms, each
synonym-concept pair is considered as a separate training
example. The parameters learned during the training are the
encoder parameters W and U, and the concept representations

through The fastText word vectors used in our experiments
had a dimensionality of 100, while we set the dimensionality

of the concept embeddings to be 1024. We used a filter size
of 1024 for the convolution layer in the encoder, and the output
of the dense layer used after the max-pooling layer was 1024.
We trained our model by minimizing the cross-entropy loss
between the softmax output and the class labels using Adam
optimizer [35], with a learning rate of 0.002 and a batch size of
256. We trained our model for 100 epochs.

Concept Recognition in a Sentence
To use our neural dictionary model to recognize concepts in a
sentence or larger text, we extract all n-grams of one to seven
words in the text and used the neural dictionary model to match
each n-gram to a concept. We filter irrelevant n-grams by
removing the candidates whose matching score (the softmax
probability provided by the neural dictionary model) is lower
than a threshold. This threshold is chosen based on the
performance of the method (f-measure) on a validation set.

We also use random n-grams from an unrelated corpus (in our
case Wikipedia) as negative examples labeled with a dummy
none concept when training the neural dictionary model. This
is done to reduce false positives that do not match to any concept
(as opposed to false positives that are due to misclassification
between two different concepts). To reduce the compute time,
we made the assumption that phenotypic phrases have a length
of at most 10 tokens, which we chose based on the empirical
evidence that less than 0.8% of the names/synonyms in the HPO
are longer than 10 tokens. As a result, the lengths of these
n-grams were uniformly selected to be between 1 and 10.

After all the n-grams satisfying the conditions are captured, a
postprocessing step is performed to ensure that the results are
consistent. For every pair of overlapping captured n-grams, if
both n-grams match the same concept, we retain the smaller
n-gram. Otherwise, if they are matched to different concepts,

we choose the longer n-gram, as this reduces the chances of
choosing shorter general concepts in the presence of a more
specific, longer, concept. For example, when annotating the
sentence “The patient was diagnosed with conotruncal heart
defect,” our method will favor choosing the longer, more
specific concept “conotruncal heart defect” rather than the more
general concept “heart defect.”

Results

Overview
To evaluate our model, we trained the model on the HPO and
SNOMED-CT and applied it to a number of medical texts. We
evaluated the model on two different tasks. In the first task, the
model ranks concepts matching an input isolated phrase
(synonym classification) and in the second task, concepts are
recognized and classified from a document (concept
recognition).

To assess the effectiveness of the techniques used in our model,
we trained four variations of the model as follows:

• NCR: The full model, with the same architecture as
described in the section Overview of the Neural Dictionary
Model. The training data for this model includes negative
examples.

• NCR-H: In this version, the model ignores the taxonomic
relations by setting the ancestry matrix A to the identity
matrix I.

• NCR-N: Similar to the original NCR, this version utilizes
the taxonomic relations. However, this model has not been
trained on negative samples.

• NCR-HN: A variation that ignores the taxonomy and has
not been trained on negative examples.

To improve stability, we trained 10 different versions of our
model, varying the random initialization of the model parameters
and randomly reshuffling the training data across minibatches
at the beginning of each training epoch. We created an ensemble
of these 10 models by averaging their prediction probabilities
for any given query and used this ensemble in all experiments.

Data Sets
In most of our experiments, we used the HPO to train the neural
dictionary model. To maintain consistency with previous work,
we used the 2016 release of the HPO, which contains a total of
11,442 clinical phenotypic abnormalities seen in human disease
and provides a total of 19,202 names and synonyms for them,
yielding an average of 1.67 names per concept.

We evaluated the accuracy of our model trained on the HPO on
two different data sets:

• PubMed: This data set contains 228 PubMed article
abstracts, gathered and manually annotated with HPO
concepts by Groza et al [14].

• Undiagnosed Diseases Program (UDP): This data set
includes 39 clinical reports provided by National Health
Institutes UDP [36]. Each case contains the medical history
of a patient in unstructured text format and a list of
phenotypic findings, recorded as a set of HPO concepts,
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gathered by the examining clinician from the patient
encounter.

In order to examine the effectiveness of our model on different
ontologies, we also trained the model on a subset of
SNOMED-CT, which is a comprehensive collection of medical
concepts that includes their synonyms and taxonomy. We
evaluated the trained model for concept recognition using a
subset of 2000 ICU discharge summaries from MIMIC-III. The
discharge summaries are composed of unstructured text and are
accompanied by a list of disease diagnosis terms in the form of
ICD-9 codes.

Since SNOMED-CT provides a more sophisticated hierarchy
than ICD-9 and a mapping between the two exists, we used a
subset of SNOMED-CT concepts that include the ICD-9
concepts. We considered the 1292 most frequent ICD-9 concepts
that have a minimum of 50 occurrences in MIMIC-III. These
were filtered to 1134 concepts that also have at least one
mapping SNOMED-CT concept, which were mapped to a total
of 8405 SNOMED-CT concepts (more SNOMED-CT concepts
because of one-to-many mappings). To have a single connected
hierarchy of concepts, we also added all missing ancestors of
these SNOMED-CT terms, resulting in a total of 11,551
SNOMED-CT concepts. To these additional 3146 SNOMED-CT
concepts, we assigned the ICD-9 code mapped to the original
SNOMED-CT term that had induced them (ie, their descendent).
We trained NCR using these 11,551 SNOMED-CT concepts
and the 21,550 names and synonyms associated with them.

Synonym Classification Results
In this experiment, we evaluated our method’s performance in
matching isolated phrases with ontology concepts. For this

purpose, we extracted 607 unique phenotypic phrases that did
not have an exact match among the names and synonyms in the
HPO from the 228 annotated PubMed abstracts. We used our
model to classify HPO concepts for these phrases and ranked
them by their score.

In addition to the four variations of our model, we compared
our method with one based on Apache Solr, customized to
suggest HPO terms for phenotypic queries. This tool is currently
in use as a component of the phenotyping software PhenoTips
[16]. The results of this experiment are provided in Table 1.
Since all the phrases in this data set are true phenotypic terms
and PhenoTips reports at most 10 concepts for each phrase, we
measured the fraction of the predictions where the correct label
was among the top 1 (R@1) and top 5 (R@5) recalled concepts,
instead of precision/recall. NCR outperformed PhenoTips by
20%-30% in this experiment. While NCR-N slightly
outperformed regular NCR based on R@1, the experiments
here contained no queries without phenotypic terms, which is
the task that NCR-N was built to model.

An example phrase from this data set is “reduced retinal
pigment,” labeled as HP:0007894. In our version of the HPO,
there are four names/synonyms for this phrase:
“hypopigmentation of the fundus,” “decreased retinal
pigmentation,” “retinal depigmentation,” and “retinal
hypopigmentation.” NCR correctly identified this concept as
its top match. In contrast, the correct concept was not in the top
10 concepts reported by PhenoTips; the top reported concept
was “retinal pigment epithelial mottling.”

Table 1. Synonym classification experiments on 607 phenotypic phrases extracted from 228 PubMed abstracts. Largest values for each category are
italicized.

Accuracy (%)Method

R@5bR@1a

49.328.9PhenoTips

80.651.6NCRc

69.845.5NCR-Hd

78.255.8NCR-Ne

71.850.2NCR-HNf

aR@1: recall using top 1 result from each method.
bR@5: recall using top 5 results from each method.
cNCR: Neural Concept Recognizer.
dNCR-H: variation of the NCR model that ignores taxonomic relations.
eNCR-N: variation of the NCR model that has not been trained on negative samples.
fNCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples.

Concept Recognition Results
We evaluated the four versions of NCR for concept recognition
and compared them with four rule-based methods: NCBO
annotator [10], cTAKES [13], BioLarK [14], and OBO annotator
[11]. The NCBO annotator is a general concept recognition tool

with access to hundreds of biomedical ontologies, including the
HPO. cTAKES is a more general medical knowledge extraction
system primarily designed for SNOMED-CT, while BioLarK
and the OBO annotator are concept recognizers primarily
tailored for the HPO. Another method, called IHP (Identifying
Human Phenotypes) [15], was recently introduced for
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identifying HPO terms in unstructured text using machine
learning for named entity recognition and a rule-based approach
for further extending them. However, this method is not directly
comparable, as it only reports the text spans that are a phenotype
and does not classify or rank matching HPO terms.

In order to choose a score threshold for filtering irrelevant
concepts, we used 40 random PubMed abstracts as a validation
set and compared the micro F1-score with different threshold
values. The selected thresholds were 0.85, 0.8, 0.8, and 0.75
for NCR, NCR-H, NCR-N, and NCR-HN, respectively. Since
the UDP data set contained fewer reports (39 in total), we did
not choose a separate UDP validation set and used the same
threshold determined for the PubMed abstracts. We tested our
methods on the remaining 188 PubMed abstracts and the 39
UDP reports and calculated micro and macro versions of
precision, recall, and F1-score, as shown in the following
equations:

In these equations, D is the set of all documents and Rd and Ld

notate the set of reported concepts and label concepts for the
document d, respectively. In cases where ｜ Ld｜ or ｜ Rd｜

were zero, we assigned a macro recall and macro precision of
1.0, respectively.

We also calculated a less strict version of accuracy
measurements that takes the taxonomic relations of the concepts
into consideration. For this, we extended the reported set and
the label set for each document to include all their ancestor
concepts, which we notate by E(Ld) and E(Rd), respectively,
and calculated an extended version of the precision and recall,
as well as the Jaccard Index of the extended sets. The following
equations show how these accuracies are derived:

The measured micro and macro accuracies are provided in
Tables 2 and 3 for the PubMed abstract and UDP data sets,

respectively. The taxonomy-based extended accuracies and the
Jaccard index results are available in Tables 4 and 5 for the
abstracts and UDP data sets, respectively. In both experiments,
based on the measurements of the Jaccard index and all three
versions of micro, macro, and extended F1-scores, NCR had
higher accuracy than all other baselines. Furthermore, by
comparing the NCR and NCR-H, we observed that using the
hierarchy information considerably improved the F1-score of
the model in the abstract data set, although the F1-score of the
UDP set was slightly lower. Finally, comparison of NCR and
NCR-N showed that using negative examples during the training
improved the overall accuracy for the abstract data set, while
not using the negatives led to a narrow advantage with the UDP
data set.

To verify the statistical significance of NCR’s superiority to
the baselines, we aggregated both the abstract and UDP data
sets for a total of 227 documents and calculated the F1-score
for each document separately. This method is different from
that used to calculate the F1-score presented in Tables 2-5,
which only show a single measurement of F1-score per category.
We compared the main version of NCR against BioLarK, which
was our strongest baseline. NCR performed statistically
significantly better (P=.003, Wilcoxon test).

To evaluate the effectiveness of the techniques employed in
NCR on a different ontology, we trained the four variations of
our model on the SNOMED-CT subset, using 200 MIMIC
reports as the validation set and the remaining 1800 reports as
a test set. We mapped each reported SNOMED-CT concept to
the corresponding ICD-9 code and calculated the accuracy
measurements (Table 6).

The results show that using the hierarchy information improved
both micro and macro F1-scores. Since the labels were only
available as ICD-9 codes, which do not hold a sufficiently rich
hierarchical structure as opposed to HPO and SNOMED-CT,
the Jaccard index and the extended accuracy measurements
were less meaningful and were not calculated. We also ran the
original cTAKES, which is optimized for SNOMED-CT
concepts, on the 1800 test documents and filtered its reported
SNOMED-CT results to ones that have a corresponding ICD-9.
Although cTAKES had a high recall, the overall F1-scores were
lower than those for NCR. Furthermore, using a method similar
to the one used to calculate the statistical significance for the
improvement relative to BioLark in the section above, we
compared NCR with cTAKES and found that NCR performed
statistically significantly better (P<.001, Wilcoxon test).
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Table 2. Micro and macro measurements for concept recognition experiments on 188 PubMed abstracts. Neural Concept Recognizer models were
trained on Human Phenotype Ontology. Largest values for each category are italicized.

Macro (%)Micro (%)Method

F1-scoreRecallPrecisionF1-scoreRecallPrecision

70.966.076.668.360.578.5BioLarK

67.161.474.062.855.672.2cTAKESa

67.558.679.563.753.778.3OBOb

60.448.779.557.244.081.6NCBOc

73.968.280.570.262.480.3NCRd

69.667.172.267.361.574.4NCR-He

72.268.376.669.462.578.1NCR-Nf

69.363.476.565.757.277.1NCR-HNg

acTAKES: Clinical Text Analysis and Knowledge Extraction System.
bOBO: Open Biological and Biomedical Ontologies 
cNCBO: National Center for Biomedical Ontology.
dNCR: Neural Concept Recognizer.
eNCR-H: variation of the NCR model that ignores taxonomic relations.
fNCR-N: variation of the NCR model that has not been trained on negative samples.
gNCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples.

Table 3. Micro and macro measurements for concept recognition experiments on 39 Undiagnosed Diseases Program clinical notes. Neural Concept
Recognizer models were trained on Human Phenotype Ontology. Largest values for each category are italicized.

Macro (%)Micro (%)Method

F1-scoreRecallPrecisionF1-scoreRecallPrecision

24.621.628.723.921.027.6BioLarK

26.220.237.523.618.931.5cTAKESa

23.720.128.823.220.526.8OBOb

25.919.937.122.516.933.4NCBOc

27.027.626.525.827.224.5NCRd

26.627.026.225.926.825.1NCR-He

27.928.927.026.228.524.3NCR-Nf

27.627.727.426.427.225.5NCR-HNg

acTAKES: Clinical Text Analysis and Knowledge Extraction System.
bOBO: Open Biological and Biomedical Ontologies 
cNCBO: National Center for Biomedical Ontology.
dNCR: Neural Concept Recognizer.
eNCR-H: variation of the NCR model that ignores taxonomic relations.
fNCR-N: variation of the NCR model that has not been trained on negative samples.
gNCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples.
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Table 4. Extended measurements for concept recognition experiments on 188 PubMed abstracts. Neural Concept Recognizer models were trained on
Human Phenotype Ontology. Largest values for each category are italicized.

Jaccard value (%)Extended value (%)Method

F1-scoreRecallPrecision

76.985.880.891.5BioLarK

72.183.373.995.6cTAKESa

74.484.577.992.4OBOb

64.377.765.495.8NCBOc

79.187.382.193.3NCRd

76.785.183.886.5NCR-He

78.286.783.190.6NCR-Nf

73.283.978.989.7NCR-HNg

acTAKES: Clinical Text Analysis and Knowledge Extraction System.
bOBO: Open Biological and Biomedical Ontologies 
cNCBO: National Center for Biomedical Ontology.
dNCR: Neural Concept Recognizer.
eNCR-H: variation of the NCR model that ignores taxonomic relations.
fNCR-N: variation of the NCR model that has not been trained on negative samples.
gNCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples.

Table 5. Extended measurements for concept recognition experiments on 39 Undiagnosed Diseases Program clinical notes. Neural Concept Recognizer
models were trained on Human Phenotype Ontology. Largest values for each category are italicized.

Jaccard index (%)Extended value (%)Method

F1-scoreRecallPrecision

29.549.542.658.9BioLarK

27.347.836.768.5cTAKESa

31.352.046.459.2OBOb

27.248.537.269.8NCBOc

31.553.049.457.1NCRd

30.551.649.454.0NCR-He

31.452.550.554.7NCR-Nf

31.352.549.056.5NCR-HNg

acTAKES: Clinical Text Analysis and Knowledge Extraction System.
bOBO: Open Biological and Biomedical Ontologies 
cNCBO: National Center for Biomedical Ontology.
dNCR: Neural Concept Recognizer.
eNCR-H: variation of the NCR model that ignores taxonomic relations.
fNCR-N: variation of the NCR model that has not been trained on negative samples.
gNCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples.
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Table 6. Results for concept recognition experiments on 1800 Multiparameter Intelligent Monitoring in Intensive Care documents. The Neural Concept
Recognizer models were trained on a subset of the Systematized Nomenclature of Medicine - Clinical Terms ontology. Largest values for each category
are italicized.

Macro (%)Micro (%)Method

F1-scoreRecallPrecisionF1-scoreRecallPrecision

14.136.58.714.637.09.1cTAKESa

15.226.910.615.526.710.9NCRb

14.630.49.615.130.610.0NCR-Hc

15.425.311.115.424.811.2NCR-Nd

13.928.99.214.428.69.6NCR-HNe

acTAKES: Clinical Text Analysis and Knowledge Extraction System.
bNCR: Neural Concept Recognizer.
cNCR-H: variation of the NCR model that ignores taxonomic relations.
dNCR-N: variation of the NCR model that has not been trained on negative samples.
eNCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples.

Qualitative Results
To better understand how utilizing the hierarchy information
affects our model, we used t-SNE (t-distributed stochastic
neighbor embedding) to embed and visualize the learned concept
representations for the rows of matrix H for NCR-N (using
hierarchy) and NCR-NH (not using the hierarchy), trained on
the HPO. These representations are illustrated in Figure 2, where
colors are assigned to concepts based on their high-level ancestor
(the 23 children of the root). If a concept had multiple high-level
ancestors, we chose one randomly. As is evident in the plots,
the representations learned for NCR-N were better clustered
than those for NCR-NH.

Interestingly, in the representations learned for NCR-N, concepts
in categories that share children with many other categories,
such as “Neoplasm” (dark grey), are located in the center of the
plot, close to various other categories, while a category like
“Abnormality of ear” (orange) forms its own cluster far from
center and is separated from other categories.

To further investigate the false positives reported by NCR, we
manually investigated the false positives reported by our method

in three clinical reports randomly chosen from the UDP data
set. We looked at false positives from the extended version of
evaluations, which included concepts reported by our method,
where neither the concepts nor any of their descendants were
in the label set. This yielded a total number of 73 unique false
positives for the three documents. Based on a manual analysis
of these terms conducted by a medical expert on rare genetic
diseases (coauthor DA), 47.9% of the reported false positives
were actually correctly adding more information to the closest
phenotype reported in the label set. One such example is
“Congenital hypothyroidism on newborn screening.” Although
our method correctly recognized “Congenital hypothyroidism,”
the closest concept in the extended label set was “Abnormality
of the endocrine system.” In an additional 8.2% of cases, our
model correctly reported a more specific concept than that
presented in the patient record, but the concept was sufficiently
close to a specified phenotype for it not to be considered a novel
finding. Furthermore, 16.4% of the reported false positives were,
in fact, mentioned in the text, albeit as negations, such as “Group
fiber atrophy was not seen.” In 6.8% of these cases, the reported
phenotype was mentioned but not confidently diagnosed, such
as “possible esophagitis and gastric outlet delay.”
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Figure 2. Visualization of the representations learned for Human Phenotype Ontology concepts. The representations are embedded into two dimensions
using t-SNE. The colors denote the high-level ancestors of the concepts. The plot on the left shows the representations learned in NCR-N, where the
taxonomy information was used in training, and the plot on the right shows representations learned for NCR-HN, where the taxonomy was ignored.
NCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples; NCR-N: variation of the NCR model
that has not been trained on negative samples; t-SNE: t-distributed stochastic neighbor embedding.

Discussion

Principal Findings
Our experiments showed the high accuracy of NCR compared
to the baselines in both synonym classification and concept
recognition, where NCR consistently achieved higher F1-scores
across different data sets. Furthermore, we showed that NCR’s
use of the hierarchical information contributes to its higher
performance.

In the synonym classification task, as evident in Table 1, all
variations of NCR had a much better performance than the tool
provided by PhenoTips. Furthermore, comparison of NCR and
NCR-H showed that use of the hierarchy information
considerably improved accuracy.

In concept recognition experiments, NCR had a better F1-score
and Jaccard index than BioLarK and cTAKES on PubMed
abstracts (Tables 2 and 4) and UDP reports (Tables 3 and 5).
On both data sets, NCR had a higher recall, showing its ability
to better generalize to synonymous terms that occurred in the
text. In some experiments, NCBO achieved the highest
precision; however, we should note that in the same experiments,
NCR achieved a much better recall rate, and when taking both
precision and recall into account, NCR had the highest F1-score.

Among different variations of NCR, use of the hierarchy
information always led to a higher F1-score and Jaccard index.
Having negative samples during training also generally
improved accuracy; however, in some cases, this difference was
small, and in some cases, NCR-N showed slightly better results.

Although the PubMed abstracts were manually annotated with
HPO concepts by Groza et al [14], the text provided for UDP
is not annotated and there is no explicit association between the
provided HPO terms and phenotypic phrases in the text.
However, since both the text and the terms referred to the same
patients, a correspondence exists between them. This can explain
the overall higher accuracy of all methods on PubMed data

compared to UDP data. As a result, these performance
measurements would be more meaningful when observed in a
relative manner, which shows the better performance of NCR
than the baselines.

The experiments on MIMIC data, where the model was trained
on SNOMED-CT, resulted in a much lower accuracy than the
two experiments performed using the HPO. In addition to the
problem of implicit correspondence between labels and actual
mentions in the text, in this experiment, we used a mapping
between ICD-9 and SNOMED-CT terms, which can introduce
further inconsistencies. On the other hand, for the sake of
evaluating the techniques employed in our model on another
ontology, use of the SNOMED-CT hierarchy, similar to the
case with the HPO, improves the F1-scores (Table 3).

In addition to the quantitative results showing the advantage of
using the hierarchy information, our visualization of the concept
representations in Figure 2 shows that the representations
learned for NCR-N are more cohesive compared to those for
NCR-HN. Although in theory, NCR-N has the flexibility to
learn representations identical to those of NCR-HN, the way
our model utilizes the taxonomy connects the embedding of
related concepts during training, which leads to better separated
clusters.

NCR has already been used in several applications in practice.
Currently, a version of NCR trained on the HPO is deployed as
a component of PhenoTips software [16] and is being used in
both annotation of clinical notes and term suggestion for
manually entered phenotypes. Another example is PhenoLines
[24], a software for visualizing disease subtypes, that relies on
a mapping between HPO and Unified Medical Language System
(UMLS) [37] terms. NCR was effectively used to help improve
the coverage of their mapping. The code for NCR is available
under the MIT license [38].
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Conclusions
In this paper, we presented a neural dictionary model that ranks
matching concepts for a query phrase and can be used for
concept recognition in larger text. Unlike other machine
learning–based concept recognition tools, our training is solely
performed on the ontology data (except the unsupervised
learning of the word vectors) and does not require any annotated
corpus. Another novelty of our model is our approach to using
the taxonomic relations between concepts that, based on our
experiments, improve synonym classification. Use of these
taxonomic relations makes the training of our model easier by
sharing knowledge between different concepts and providing
implicit prior information on the similarity between concepts
for the model. Furthermore, using multiple sources of
information can improve the robustness of the model to potential
errors in the input ontologies (eg, due to a mislabeled synonym).

NCR uses convolutional neural networks to encode query
phrases into vector representations and computes their similarity
to embeddings learned for ontology concepts. The model
benefits from knowledge transfer between child and parent
concepts by summing the raw embeddings of a concept’s
ancestors to compute its final embedding. We tested our neural
dictionary model by classifying 607 phenotypic phrases, and
our model achieved a considerably higher accuracy than another
method designed for this task and baseline versions of our model
that do not use the taxonomy information. We also tested our
method for concept recognition on full text using four data sets.
In one setting, we trained our model on the HPO and tested it

on two data sets, including 188 PubMed paper abstracts and 39
UDP clinical records, while in another setting, we trained the
model on a subset of SNOMED-CT medical concepts and tested
it on 1800 MIMIC ICU discharge notes. Our results showed
the efficiency of our methods in both settings.

One major challenge for the concept recognition task is to filter
candidates that do not match any class in the ontology. In our
experiments, we approached this challenge by adding negative
samples from Wikipedia in the training. Although this improved
the results, it did not fully solve the problem, as there can be
many relevant medical terms in a clinical text that are neither
in an ontology nor available in any negative examples.

Although our experiments have shown the high accuracy of our
model in classifying synonyms, we believe there is much more
room for improvement in the overall concept recognition
method, especially the way that n-grams are selected and
filtered. Limitations of NCR include its relatively slower speed
than several dictionary-based and rule-based methods and its
limited ability to utilize contextual information for concept
recognition. An interesting direction for future work is to
investigate the possibility of using unsupervised methods for
encoding phrases, such as skip-thought vectors [39] or the
recently introduced language representation model BERT
(Bidirectional Encoder Representations from Transformers)
[40], to use the massive amount of available unannotated
biomedical corpora for better generalization of classifying
synonymous phrases and concept recognition.
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HPO: Human Phenotype Ontology
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ICU: Intensive Care Unit
IHP: Identifying Human Phenotypes
LSTM: long short-term memory
MIMIC: Multiparameter Intelligent Monitoring in Intensive Care
NER: named entity recognizer
NCBO: National Center for Biomedical Ontology
NCR: Neural Concept Recognizer
NCR-H: variation of the NCR model that ignores taxonomic relations
NCR-HN: variation of the NCR model that ignores the taxonomy and has not been trained on negative examples
NCR-N: variation of the NCR model that has not been trained on negative samples
OBO: Open Biological and Biomedical Ontologies 
R@1: recall using top 1 results from each method
R@5: recall using top 5 results from each method
ReLU: rectified linear unit
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t-SNE: t-distributed stochastic neighbor embedding
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